Semiparametric Bayesian analysis of case-control data under conditional gene-environment independence.

نویسندگان

  • Bhramar Mukherjee
  • Li Zhang
  • Malay Ghosh
  • Samiran Sinha
چکیده

In case-control studies of gene-environment association with disease, when genetic and environmental exposures can be assumed to be independent in the underlying population, one may exploit the independence in order to derive more efficient estimation techniques than the traditional logistic regression analysis (Chatterjee and Carroll, 2005, Biometrika92, 399-418). However, covariates that stratify the population, such as age, ethnicity and alike, could potentially lead to nonindependence. In this article, we provide a novel semiparametric Bayesian approach to model stratification effects under the assumption of gene-environment independence in the control population. We illustrate the methods by applying them to data from a population-based case-control study on ovarian cancer conducted in Israel. A simulation study is conducted to compare our method with other popular choices. The results reflect that the semiparametric Bayesian model allows incorporation of key scientific evidence in the form of a prior and offers a flexible, robust alternative when standard parametric model assumptions do not hold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برآورد اثر متقابل ژن - محیط در سرطان پستان با مطالعات مورد - شاهد و فقط مورد

Background and Aim: Limitations of the traditional methods for assessing G*E interaction- including case-control studies- led to development of several non-traditional approaches. This study aims to assess the interaction between the genetic background (history of breast cancer in first degree relatives) and environmental influences (reproductive/menstrual factors) in patients with breast cance...

متن کامل

The semiparametric case-only estimator.

We propose a semiparametric case-only estimator of multiplicative gene-environment or gene-gene interactions, under the assumption of conditional independence of the two factors given a vector of potential confounding variables. Our estimator yields valid inferences on the interaction function if either but not necessarily both of two unknown baseline functions of the confounders is correctly m...

متن کامل

Semiparametric analysis of complex polygenic gene-environment interactions in case-control studies.

Many methods have recently been proposed for efficient analysis of case-control studies of gene-environment interactions using a retrospective likelihood framework that exploits the natural assumption of gene-environment independence in the underlying population. However, for polygenic modelling of gene-environment interactions, which is a topic of increasing scientific interest, applications o...

متن کامل

Double Robust Semiparametric Efficient Tests for Distributional Treatment Effects under the Conditional Independence Assumption

This note describes methods to test for distributional treatment effects under the conditional independence assumption. The differences between latent outcome distributions are judged by testing hypotheses of distributional equality and stochastic dominance. Furthermore, semiparametric efficient versions of the test statistics are given. The latter test statistics are double robust, i.e., they ...

متن کامل

Exploiting gene-environment independence in family-based case-control studies: increased power for detecting associations, interactions and joint effects.

Family-based case-control studies are popularly used to study the effect of genes and gene-environment interactions in the etiology of rare complex diseases. We consider methods for the analysis of such studies under the assumption that genetic susceptibility (G) and environmental exposures (E) are independently distributed of each other within families in the source population. Conditional log...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 63 3  شماره 

صفحات  -

تاریخ انتشار 2007